A Differential Evolution-Based Clustering for Probability Density Functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unsupervised Riemannian Clustering of Probability Density Functions

We present an algorithm for grouping families of probability density functions (pdfs). We exploit the fact that under the square-root re-parametrization, the space of pdfs forms a Riemannian manifold, namely the unit Hilbert sphere. An immediate consequence of this re-parametrization is that different families of pdfs form different submanifolds of the unit Hilbert sphere. Therefore, the proble...

متن کامل

Density-Based Clustering Based on Probability Distribution for Uncertain Data

Today we have seen so much digital uncertain data produced. Handling of this uncertain data is very difficult. Commonly, the distance between these uncertain object descriptions are expressed by one numerical distance value. Clustering on uncertain data is one of the essential and challenging tasks in mining uncertain data. The previous methods extend partitioning clustering methods like k-mean...

متن کامل

A Verified Compiler for Probability Density Functions

Bhat et al. [1] developed an inductive compiler that computes density functions for probability spaces described by programs in a probabilistic functional language. In this work, we implement such a compiler for a modified version of this language within the theorem prover Isabelle and give a formal proof of its soundness w.r.t. the semantics of the source and target language. Together with Isa...

متن کامل

Visualization and exploration of spatial probability density functions: a clustering-based approach

We present an interactive visualization technique for spatial probability density function data. These are datasets that represent a spatial collection of random variables, and contain a number of possible outcomes for each random variable. It is impractical to visualize all the information at each spatial location as it will quickly lead to a cluttered image. We advocate the use of hierarchica...

متن کامل

Adjustable Probability Density Grid-Based Clustering for Uncertain Data Streams

Most existing traditional grid-based clustering algorithms for uncertain data streams that used the fixed meshing method have the disadvantage of low clustering accuracy. In view of above deficiencies, this paper proposes a novel algorithm APDG-CUStream, Adjustable Probability Density Grid-based Clustering for Uncertain Data Streams, which adopts the online component and offline component. In o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Access

سال: 2018

ISSN: 2169-3536

DOI: 10.1109/access.2018.2849688